On a class of curvature preserving almost geodesic mappings of manifolds with affine connection

dc.contributor.authorБерезовський, Володимир Євгенійович
dc.contributor.authorBerezovskii, V. E.
dc.date.accessioned2016-01-04T11:03:54Z
dc.date.available2016-01-04T11:03:54Z
dc.date.issued2011
dc.description.abstractIn this paper we pay attention to a particular case of almost geodesic mappings of the first type between (differentiable) manifolds with affine connection. We use here lassical tensor methods and the apparatus of partial differential equations. We prove that under the mappings under consideration, the invariant geometric object is just the (Riemannian) curvature tensor of the connection. We present the basic equations of the lass of mappings under consideration in an equivalent form of the Cauchy system in covariant derivatives.uk_UA
dc.identifier.citationBerezovski Vladimir, Mikes Josef, Vanzurova Alena. On a class of curvature preserving almost geodesic mappings of manifolds with affine connection. Journal of applied mathematics, V. 4 (2011), N 2, 145-150.uk_UA
dc.identifier.issn1337-6365
dc.identifier.urihttp://lib.udau.edu.ua/handle/123456789/1818
dc.language.isoenuk_UA
dc.publisherSlovak University of Technology in Bratislavauk_UA
dc.subjectalmost geodesic mappingsuk_UA
dc.subjectinvariant geometric objectuk_UA
dc.subjectmanifolds with affine connectionuk_UA
dc.titleOn a class of curvature preserving almost geodesic mappings of manifolds with affine connectionuk_UA
dc.typeСтаттяuk_UA
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
N_2_2011.pdf
Size:
398.25 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
7.14 KB
Format:
Item-specific license agreed upon to submission
Description: