Geodesic Mappings onto Generalized m-Ricci-Symmetric Spaces

dc.contributor.authorБерезовський, Володимир Євгенійович
dc.date.accessioned2022-06-21T16:22:38Z
dc.date.available2022-06-21T16:22:38Z
dc.date.issued2022
dc.description.abstractIn this paper, we study geodesic mappings of spaces with affine connections onto generalized 2-, 3-, and m-Ricci-symmetric spaces. In either case, the main equations for the mappings are obtained as a closed system of linear differential equations of the Cauchy type in the covariant derivatives. For the systems, we have found the maximum number of essential parameters on which the solutions depend. These results generalize the properties of geodesic mappings onto symmetric, recurrent, and also 2-, 3-, and m-(Ricci-)symmetric spaces with affine connections.uk_UA
dc.identifier.citationBerezovski, V.; Cherevko, Y.; Hinterleitner, I.; Peška, P. Geodesic Mappings onto Generalized m-Ricci-Symmetric Spaces. Mathematics 2022, 10, 2165. https://doi.org/10.3390/math10132165uk_UA
dc.identifier.issn2227-7390
dc.identifier.urihttps://lib.udau.edu.ua/handle/123456789/9213
dc.language.isoenuk_UA
dc.publisherMDPI (Basel, Switzerland)uk_UA
dc.subjectgeodesic mappinguk_UA
dc.subjectspace with affine connectionsuk_UA
dc.subjectm-Ricci-symmetric spaceuk_UA
dc.subjectCauchy-type differential equationsuk_UA
dc.titleGeodesic Mappings onto Generalized m-Ricci-Symmetric Spacesuk_UA
dc.typeСтаттяuk_UA
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
mathematics-10-06_22.pdf
Size:
286.13 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
13.01 KB
Format:
Item-specific license agreed upon to submission
Description: