Березовський, Володимир Євгенійович2022-06-212022-06-212022Berezovski, V.; Cherevko, Y.; Hinterleitner, I.; Peška, P. Geodesic Mappings onto Generalized m-Ricci-Symmetric Spaces. Mathematics 2022, 10, 2165. https://doi.org/10.3390/math101321652227-7390https://lib.udau.edu.ua/handle/123456789/9213In this paper, we study geodesic mappings of spaces with affine connections onto generalized 2-, 3-, and m-Ricci-symmetric spaces. In either case, the main equations for the mappings are obtained as a closed system of linear differential equations of the Cauchy type in the covariant derivatives. For the systems, we have found the maximum number of essential parameters on which the solutions depend. These results generalize the properties of geodesic mappings onto symmetric, recurrent, and also 2-, 3-, and m-(Ricci-)symmetric spaces with affine connections.engeodesic mappingspace with affine connectionsm-Ricci-symmetric spaceCauchy-type differential equationsGeodesic Mappings onto Generalized m-Ricci-Symmetric SpacesСтаття